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Abstract. This paper explores the effect of the asynchronous-
synchronous tradeoff in Cellular Genetic Algorithms (cGA). We perform
this exploration by introducing an update policy called k-Fixed Line
Sweep (kFLS). We tested the kFLS in a cGA over different uni-modal
and multi-modal continuous optimization functions. The results show
that for some cases, the cGA can converge more quickly to an optimal
solution if the value of k is appropriately adjusted.
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1 Introduction

Cellular Genetic Algorithms (cGA) are a class of Evolutionary Algorithms
(EA) that evolve a population of individuals, with overlapped neighborhoods,
by applying genetic operators over a small neighborhood of each individual.
cGAs have been used for finding near-optimal solutions to different kinds
of optimization problems. This includes combinatorial [4] and multi-objective
optimization [5, 6] problems. One of the advantages of cGAs is that parallelism
mechanisms can be directly used. Usually, the individuals of a cGA are
distributed in a regular 1D, 2D, or 3D grid [1]. Nevertheless, this paper only
considers 1D grids with closed boundary conditions (a.k.a. rings).

There are many parameters that can influence a cGA’s performance. These
include the neighborhood, topology, and update policy. This work focuses
on the latter. An update policy indicates the order in which individuals are
explored and how they affect each other. Depending on the used policy, an
individual’s codification can spread differently across the grid. An update policy
can be asynchronous or synchronous. Synchronous (SYN) update consists in
independently updating all the cells and then replacing the whole population.
In an asynchronous update, the cells are sequentially updated, immediately
replacing the individuals. The main asynchronous update policies reported in
the literature are the following [2]:
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– Uniform Choice (UC). The cell to be updated is selected uniformly at
random, with replacement.

– Fixed Line Sweep (FLS). The cells are updated row by row. The cells in the
sequence are adjacent in the ring.

– Fixed Random Sweep (FRS). It is similar to FLS. However, the sequence of
cells is generated at random and, once defined, it never changes.

– New Random Sweep (NRS). It is similar to FRS. However, every time a
sequence is fully explored, a new random sequence is sampled.

Independently of the update policy, a time step is usually defined as updating
all the cells in the grid. However, in this paper, we define a time step as the
action of synchronously updating a subset of cells, i.e., not all of the cells are
necessarily explored. This way, we set the basis for empirically investigating the
tradeoff between asynchrony and synchrony. In more detail, this work introduces
a generalization of the FLS update policy. We refer to this proposal as k-Fixed
Line Sweep (kFLS). In fact, kFLS with k = 1 is equivalent to FLS and is
equivalent to SYN when k = n, where n is the length of the ring. The following
section introduces kFLS in detail.

The remaining part of the paper is structured as follows. Section 2
introduces the kFLS update policy. Then, Section 3 presents the experimental
setup and results. Finally, Section 4 presents the concluding remarks and
possible future work.

2 k-Fixed Line Sweep

This paper explores an update policy named k-Fixed Line Sweep (kFLS). This
policy is straightforward. It is similar to FLS; however, it synchronously explores
k adjacent cells instead of exploring cells one by one. Thus, kFLS with k = 1
(1FLS) is equivalent to FLS, and kFLS with k = n is equivalent to SYN, where
n is the number of cells. Since we are working with a 1D grid, the number of
cells and the length of the ring are the same. Figure 1 shows an example of how
FLS works. In these diagrams, each row represents a time step. Namely, a step
where all the black cells are synchronously updated. In these figures, the length
of the ring is 11, and the number of time steps is 13. Observe that the number
of explored cells in Figure 1(a) is 13, and it is 65 in Figure 1(b).

As mentioned before, FLS and SYN are extreme cases of kFLS. In order to
explore the effect of different values of k, we applied kFLS over a set of continuous
optimization problems. The following section presents the experimental setup
and results.

3 Experimental Results

This section presents the results of using the kFLS update policy over a cGA for
solving a set of continuous single-objective optimization benchmark functions.
These functions are separated into uni-modal and multi-modal (Tables 1 and
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(a) k = 1 (b) k = 5

Fig. 1. kFLS.

Table 1. Benchmark uni-modal functions.

Name Function Domain

Sphere
∑d

i=1 x
2
i [−5.12, 5.12]

Sum Squares
∑d

i=1 ix
2
i [−10, 10]

Rotated Hyper-Ellipsoid
∑d

i=1

∑i
j=1 x

2
j [−65.536, 65.536]

Zakharov
∑d

i=1 x
2
i +

(∑d
i=1 0.5ixi

)2

+(∑d
i=1 0.5ixi

)4

[−5, 10]

2). Table 3 shows a simple configuration used for all experiments. The ring has
closed boundary conditions, and its length is 100. So, we test kFLS with values
k ∈ {1, 2, ..., 100}. The selected neighborhood is one of the simplest possible,
EAST-WEST (left and right cells). Concerning recombination, the mother is the
incumbent individual, and the father is randomly selected from its neighborhood.
The crossover operator is the blending method, which generates the offspring by
applying Eq. 1, where β is a random number in [0, 1] and xn (yn) is the allele
of the nth gene in the chromosome of the mother (father) [3]. If the resulting
offspring is better than the incumbent individual, it replaces it. All functions
from Tables 1 and 2 have a fitness value of zero for every d ∈ Z+. All functions
were solved with d = 1 and d = 2. For practical purposes, we established as
“optimal” any solution of size less than 10−4 (10−2) for d = 1 (d = 2).

zn = βxn + (1− β)yn, (1)

Figures 2 and 3 show the results obtained by executing a cGA, using kFLS as
update policy, over the set of uni-modal and multi-modal functions from Tables
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Table 2. Benchmark multi-modal functions.

Name Function Domain

Ackley −20 exp

(
−0.2

√
1
d

∑d
i=1 x

2
i

)
−

exp
(

1
d

∑d
i=1 cos(2πxi)

)
+ 20 + exp(1)

[−5.12, 5.12]

Rastrigin 10d+
∑d

i=1[x
2
i − 10 cos(2πxi)] [−5.12, 5.12]

Schwefel 418.9829d−
∑d

i=1 xi sin(
√

|xi|) [−500, 500]

Griewank
∑d

i=1

x2
i

4000
−

∏d
i=1 cos

(
xi√
i

)
+ 1 [−600, 600]

Table 3. cGA’s configuration.

Ring length 100

Boundary conditions Closed

Neighborhood East-West

Crossover operator Blending method

Mutation operator Uniform random

Mutation probability 0.1

Replacement criterion Improvement

1 and 2. The reported values are the average number of crossovers performed by
the cGA. For each value of k, the cGA was executed 300 times; the stop condition
being to find an optimal solution. The black points represent the average of 30
different executions. So, for each value of k, 10 black points are reported. The
red point represents the average of these 10 black points. From Figure 2, observe
that all uni-modal functions with d = 1 tend to be solved faster for values of
k around 10 and 20. Intuitively, this makes sense because uni-modal functions
are relatively easy to solve. Thus, having more exploitation than exploration
elements should improve the convergence time to optimal solutions. So, kFLS
with small values of k has more exploitation elements because it takes advantage
of the previously explored cells more quickly. Now, for d = 2, the value of k
that improves the convergence time to optimal solutions is slightly greater. This
makes sense too, because for d = 2 the functions are more difficult to solve.
Thus, they should require less exploitation. Nevertheless, notice that the results
from Figure 2(h) suggest that there might be functions such that there is no
difference regarding the value of k.

Regarding multi-modal functions in Figure 3, the observations are similar to
those obtained for the uni-modal functions. Namely, for d = 1, a greater value
of k, around 20 and 40, helps improve the cGA’s running time. Now, for d = 2,
it is not easy to infer any improvement using intermediate values of k. From
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(a) Sphere, d = 1
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(b) Sphere, d = 2
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(c) Sum Squares, d = 1
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(d) Sum Squares, d = 2
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(e) Zakharov, d = 1
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(f) Zakharov, d = 2
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(g) Rotated Hyper-Ellipsoid, d = 1
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(h) Rotated Hyper-Ellipsoid, d = 2

Fig. 2. Average running time of the cGA over some uni-modal functions.

these last figures, we cannot make any strong conjecture. Thus, we left a more
rigorous analysis as future work.
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(a) Ackley, d = 1
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(b) Ackley, d = 2
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(c) Rastrigin, d = 1
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(d) Rastrigin, d = 2
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(e) Schwefel, d = 1
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(f) Schwefel, d = 2
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(g) Griewank, d = 1
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(h) Griewank, d = 2

Fig. 3. Average running time of the cGA over some multi-modal functions.

4 Conclusions and Future Work

In this work, we attempted to explore the tradeoff between asynchronous and
synchronous update policies in cGAs. To do so, we introduce an update policy,
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named k-Fixed Line Sweep (kFLS). This policy was applied over a cGA for
solving different single-objective benchmark continuous optimization functions.
The results show that, for some cases, kFLS can accelerate convergence to
near-optimal solutions if the value of k is appropriately adjusted. As a first
approach, the performed empirical analysis may not be rigorous enough. Thus,
in the future, we would like to perform a more robust and rigorous statistical
analysis. Besides, we would like to explore the effect of different neighborhoods,
topologies, and strategies, such as Cellular Memetic Algorithms (cMA). Finally,
we are especially interested in performing an analysis of kFLS for NP-hard
combinatorial optimization problems.
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