
A First Approach to Asynchronous-Synchronous
Tradeoff in 1D Cellular Genetic Algorithms

José Alejandro Cornejo Acosta1, Jesús Garćıa Dı́az1,2

1 Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
Coordinación de Ciencias Computacionales,

Mexico

2 Consejo Nacional de Ciencia y Tecnoloǵıa,
Mexico

alexcornejo@inaoep.mx,jesus.garcia@conacyt.mx

Abstract. This paper explores the effect of the asynchronous-
synchronous tradeoff in Cellular Genetic Algorithms (cGA). We perform
this exploration by introducing an update policy called k-Fixed Line
Sweep (kFLS). We tested the kFLS in a cGA over different uni-modal
and multi-modal continuous optimization functions. The results show
that for some cases, the cGA can converge more quickly to an optimal
solution if the value of k is appropriately adjusted.

Keywords: Cellular genetic algorithms, asynchronous update, fixed
line sweep.

1 Introduction

Cellular Genetic Algorithms (cGA) are a class of Evolutionary Algorithms
(EA) that evolve a population of individuals, with overlapped neighborhoods,
by applying genetic operators over a small neighborhood of each individual.
cGAs have been used for finding near-optimal solutions to different kinds
of optimization problems. This includes combinatorial [4] and multi-objective
optimization [5, 6] problems. One of the advantages of cGAs is that parallelism
mechanisms can be directly used. Usually, the individuals of a cGA are
distributed in a regular 1D, 2D, or 3D grid [1]. Nevertheless, this paper only
considers 1D grids with closed boundary conditions (a.k.a. rings).

There are many parameters that can influence a cGA’s performance. These
include the neighborhood, topology, and update policy. This work focuses
on the latter. An update policy indicates the order in which individuals are
explored and how they affect each other. Depending on the used policy, an
individual’s codification can spread differently across the grid. An update policy
can be asynchronous or synchronous. Synchronous (SYN) update consists in
independently updating all the cells and then replacing the whole population.
In an asynchronous update, the cells are sequentially updated, immediately
replacing the individuals. The main asynchronous update policies reported in
the literature are the following [2]:

141

ISSN 1870-4069

Research in Computing Science 150(12), 2021pp. 141–147; rec. 2021-05-12; acc. 2021-08-20

– Uniform Choice (UC). The cell to be updated is selected uniformly at
random, with replacement.

– Fixed Line Sweep (FLS). The cells are updated row by row. The cells in the
sequence are adjacent in the ring.

– Fixed Random Sweep (FRS). It is similar to FLS. However, the sequence of
cells is generated at random and, once defined, it never changes.

– New Random Sweep (NRS). It is similar to FRS. However, every time a
sequence is fully explored, a new random sequence is sampled.

Independently of the update policy, a time step is usually defined as updating
all the cells in the grid. However, in this paper, we define a time step as the
action of synchronously updating a subset of cells, i.e., not all of the cells are
necessarily explored. This way, we set the basis for empirically investigating the
tradeoff between asynchrony and synchrony. In more detail, this work introduces
a generalization of the FLS update policy. We refer to this proposal as k-Fixed
Line Sweep (kFLS). In fact, kFLS with k = 1 is equivalent to FLS and is
equivalent to SYN when k = n, where n is the length of the ring. The following
section introduces kFLS in detail.

The remaining part of the paper is structured as follows. Section 2
introduces the kFLS update policy. Then, Section 3 presents the experimental
setup and results. Finally, Section 4 presents the concluding remarks and
possible future work.

2 k-Fixed Line Sweep

This paper explores an update policy named k-Fixed Line Sweep (kFLS). This
policy is straightforward. It is similar to FLS; however, it synchronously explores
k adjacent cells instead of exploring cells one by one. Thus, kFLS with k = 1
(1FLS) is equivalent to FLS, and kFLS with k = n is equivalent to SYN, where
n is the number of cells. Since we are working with a 1D grid, the number of
cells and the length of the ring are the same. Figure 1 shows an example of how
FLS works. In these diagrams, each row represents a time step. Namely, a step
where all the black cells are synchronously updated. In these figures, the length
of the ring is 11, and the number of time steps is 13. Observe that the number
of explored cells in Figure 1(a) is 13, and it is 65 in Figure 1(b).

As mentioned before, FLS and SYN are extreme cases of kFLS. In order to
explore the effect of different values of k, we applied kFLS over a set of continuous
optimization problems. The following section presents the experimental setup
and results.

3 Experimental Results

This section presents the results of using the kFLS update policy over a cGA for
solving a set of continuous single-objective optimization benchmark functions.
These functions are separated into uni-modal and multi-modal (Tables 1 and

142

José Alejandro Cornejo Acosta, Jesús García Díaz

Research in Computing Science 150(12), 2021 ISSN 1870-4069

(a) k = 1 (b) k = 5

Fig. 1. kFLS.

Table 1. Benchmark uni-modal functions.

Name Function Domain

Sphere
∑d

i=1 x
2
i [−5.12, 5.12]

Sum Squares
∑d

i=1 ix
2
i [−10, 10]

Rotated Hyper-Ellipsoid
∑d

i=1

∑i
j=1 x

2
j [−65.536, 65.536]

Zakharov
∑d

i=1 x
2
i +

(∑d
i=1 0.5ixi

)2

+(∑d
i=1 0.5ixi

)4

[−5, 10]

2). Table 3 shows a simple configuration used for all experiments. The ring has
closed boundary conditions, and its length is 100. So, we test kFLS with values
k ∈ {1, 2, ..., 100}. The selected neighborhood is one of the simplest possible,
EAST-WEST (left and right cells). Concerning recombination, the mother is the
incumbent individual, and the father is randomly selected from its neighborhood.
The crossover operator is the blending method, which generates the offspring by
applying Eq. 1, where β is a random number in [0, 1] and xn (yn) is the allele
of the nth gene in the chromosome of the mother (father) [3]. If the resulting
offspring is better than the incumbent individual, it replaces it. All functions
from Tables 1 and 2 have a fitness value of zero for every d ∈ Z+. All functions
were solved with d = 1 and d = 2. For practical purposes, we established as
“optimal” any solution of size less than 10−4 (10−2) for d = 1 (d = 2).

zn = βxn + (1− β)yn, (1)

Figures 2 and 3 show the results obtained by executing a cGA, using kFLS as
update policy, over the set of uni-modal and multi-modal functions from Tables

143

A First Approach to Asynchronous-Synchronous Tradeoff in 1D Cellular Genetic Algorithms

Research in Computing Science 150(12), 2021ISSN 1870-4069

Table 2. Benchmark multi-modal functions.

Name Function Domain

Ackley −20 exp

(
−0.2

√
1
d

∑d
i=1 x

2
i

)
−

exp
(

1
d

∑d
i=1 cos(2πxi)

)
+ 20 + exp(1)

[−5.12, 5.12]

Rastrigin 10d+
∑d

i=1[x
2
i − 10 cos(2πxi)] [−5.12, 5.12]

Schwefel 418.9829d−
∑d

i=1 xi sin(
√

|xi|) [−500, 500]

Griewank
∑d

i=1

x2
i

4000
−

∏d
i=1 cos

(
xi√
i

)
+ 1 [−600, 600]

Table 3. cGA’s configuration.

Ring length 100

Boundary conditions Closed

Neighborhood East-West

Crossover operator Blending method

Mutation operator Uniform random

Mutation probability 0.1

Replacement criterion Improvement

1 and 2. The reported values are the average number of crossovers performed by
the cGA. For each value of k, the cGA was executed 300 times; the stop condition
being to find an optimal solution. The black points represent the average of 30
different executions. So, for each value of k, 10 black points are reported. The
red point represents the average of these 10 black points. From Figure 2, observe
that all uni-modal functions with d = 1 tend to be solved faster for values of
k around 10 and 20. Intuitively, this makes sense because uni-modal functions
are relatively easy to solve. Thus, having more exploitation than exploration
elements should improve the convergence time to optimal solutions. So, kFLS
with small values of k has more exploitation elements because it takes advantage
of the previously explored cells more quickly. Now, for d = 2, the value of k
that improves the convergence time to optimal solutions is slightly greater. This
makes sense too, because for d = 2 the functions are more difficult to solve.
Thus, they should require less exploitation. Nevertheless, notice that the results
from Figure 2(h) suggest that there might be functions such that there is no
difference regarding the value of k.

Regarding multi-modal functions in Figure 3, the observations are similar to
those obtained for the uni-modal functions. Namely, for d = 1, a greater value
of k, around 20 and 40, helps improve the cGA’s running time. Now, for d = 2,
it is not easy to infer any improvement using intermediate values of k. From

144

José Alejandro Cornejo Acosta, Jesús García Díaz

Research in Computing Science 150(12), 2021 ISSN 1870-4069

0 20 40 60 80 100
k

75

100

125

150

175

200

225

250

of
 c

ro
ss

ov
er

s

(a) Sphere, d = 1

0 20 40 60 80 100
k

150

200

250

300

350

400

450

500

of

 c
ro

ss
ov

er
s

(b) Sphere, d = 2

0 20 40 60 80 100
k

100

150

200

250

300

350

of

 c
ro

ss
ov

er
s

(c) Sum Squares, d = 1

0 20 40 60 80 100
k

300

400

500

600

700

800

900

of

 c
ro

ss
ov

er
s

(d) Sum Squares, d = 2

0 20 40 60 80 100
k

100

125

150

175

200

225

250

275

300

of

 c
ro

ss
ov

er
s

(e) Zakharov, d = 1

0 20 40 60 80 100
k

300

400

500

600

700

800

of

 c
ro

ss
ov

er
s

(f) Zakharov, d = 2

0 20 40 60 80 100
k

200

300

400

500

600

700

of

 c
ro

ss
ov

er
s

(g) Rotated Hyper-Ellipsoid, d = 1

0 20 40 60 80 100
k

4000

4500

5000

5500

6000

6500

7000

of

 c
ro

ss
ov

er
s

(h) Rotated Hyper-Ellipsoid, d = 2

Fig. 2. Average running time of the cGA over some uni-modal functions.

these last figures, we cannot make any strong conjecture. Thus, we left a more
rigorous analysis as future work.

145

A First Approach to Asynchronous-Synchronous Tradeoff in 1D Cellular Genetic Algorithms

Research in Computing Science 150(12), 2021ISSN 1870-4069

0 20 40 60 80 100
k

1000

1200

1400

1600

1800

2000

2200

of
 c

ro
ss

ov
er

s

(a) Ackley, d = 1

0 20 40 60 80 100
k

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

of

 c
ro

ss
ov

er
s

(b) Ackley, d = 2

0 20 40 60 80 100
k

400

500

600

700

800

900

1000

of

 c
ro

ss
ov

er
s

(c) Rastrigin, d = 1

0 20 40 60 80 100
k

3000

3250

3500

3750

4000

4250

4500

4750

5000

of

 c
ro

ss
ov

er
s

(d) Rastrigin, d = 2

0 20 40 60 80 100
k

1000

1200

1400

1600

1800

2000

of

 c
ro

ss
ov

er
s

(e) Schwefel, d = 1

0 20 40 60 80 100
k

8000

8500

9000

9500

10000

10500

11000

11500

12000

of

 c
ro

ss
ov

er
s

(f) Schwefel, d = 2

0 20 40 60 80 100
k

1600

1800

2000

2200

2400

of

 c
ro

ss
ov

er
s

(g) Griewank, d = 1

0 20 40 60 80 100
k

8000

9000

10000

11000

12000

13000

14000

of

 c
ro

ss
ov

er
s

(h) Griewank, d = 2

Fig. 3. Average running time of the cGA over some multi-modal functions.

4 Conclusions and Future Work

In this work, we attempted to explore the tradeoff between asynchronous and
synchronous update policies in cGAs. To do so, we introduce an update policy,

146

José Alejandro Cornejo Acosta, Jesús García Díaz

Research in Computing Science 150(12), 2021 ISSN 1870-4069

named k-Fixed Line Sweep (kFLS). This policy was applied over a cGA for
solving different single-objective benchmark continuous optimization functions.
The results show that, for some cases, kFLS can accelerate convergence to
near-optimal solutions if the value of k is appropriately adjusted. As a first
approach, the performed empirical analysis may not be rigorous enough. Thus,
in the future, we would like to perform a more robust and rigorous statistical
analysis. Besides, we would like to explore the effect of different neighborhoods,
topologies, and strategies, such as Cellular Memetic Algorithms (cMA). Finally,
we are especially interested in performing an analysis of kFLS for NP-hard
combinatorial optimization problems.

References

1. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms, vol. 42. Springer Science &
Business Media (2009)

2. Alba, E., Giacobini, M., Tomassini, M., Romero, S.: Comparing synchronous and
asynchronous cellular genetic algorithms. In: International Conference on Parallel
Problem Solving from Nature. pp. 601–610. Springer (2002)

3. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley & Sons, 2 edn.
(2004)

4. Luque, G., Alba, E., Dorronsoro, B.: An asynchronous parallel implementation of
a cellular genetic algorithm for combinatorial optimization. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation. p. 1395–1402.
GECCO ’09, Association for Computing Machinery, New York, NY, USA (2009),
https://doi.org/10.1145/1569901.1570088

5. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Mocell: A
cellular genetic algorithm for multiobjective optimization. International Journal
of Intelligent Systems 24(7), 726–746 (2009), https://onlinelibrary.wiley.com/
doi/abs/10.1002/int.20358

6. Zhang, B., Xu, L., Zhang, J.: A multi-objective cellular genetic algorithm for
energy-oriented balancing and sequencing problem of mixed-model assembly line.
Journal of Cleaner Production 244, 118845 (2020), https://www.sciencedirect.
com/science/article/pii/S0959652619337151

147

A First Approach to Asynchronous-Synchronous Tradeoff in 1D Cellular Genetic Algorithms

Research in Computing Science 150(12), 2021ISSN 1870-4069

